Improved speaker verification through probabilistic subspace adaptation
نویسندگان
چکیده
In this paper we propose a new adaptation technique for improved text-independent speaker verification with limited amounts of training data using Gaussian mixture models (GMMs). The technique, referred to as probabilistic subspace adaptation (PSA), employs a probabilistic subspace description of how a client’s parametric representation (i.e. GMM) is allowed to vary. Our technique is compared to traditional maximum a posteriori (MAP) adaptation, or relevance adaptation (RA), and maximum likelihood eigen-decomposition (MLED), or subspace adaptation (SA) techniques. Results are given on a subset of the XM2VTS databases for the task of textindependent speaker verification.
منابع مشابه
Improved Speaker Verification through Pro
In this paper we propose a new adaptation technique for improved text-independent speaker verification with limited amounts of training data using Gaussian mixture models (GMMs). The technique, referred to as probabilistic subspace adaptation (PSA), employs a probabilistic subspace description of how a client’s parametric representation (i.e. GMM) is allowed to vary. Our technique is compared t...
متن کاملFactor analysis modelling for speaker verification with short utterances
This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constraine...
متن کاملGMMWeights Adaptation Based on Subspace Approaches for Speaker Verification
In this paper, we explored the use of Gaussian Mixture Model (GMM) weights adaptation for speaker verification. We compared two different subspace weight adaptation approaches: Subspace Multinomial Model (SMM) and Non-Negative factor Analysis (NFA). Both techniques achieved similar results and seemed to outperform the retraining maximum likelihood (ML) weight adaptation. However, the training p...
متن کاملAn investigation into subspace rapid speaker adaptation for verification
Rapid speaker adaptation is becoming more important in emerging applications where storage, computation and training utterances are at a premium (e.g. PDAs, cell phones). Effective adaptation can be achieved for the task of speaker verification, based on a maximum a posteriori (MAP) learning framework, by restricting the client’s parametric model to be a linear combination of parameters estimat...
متن کاملAn Integration of Random Subspace Sampling and Fishervoice for Speaker Verification
In this paper, we propose an integration of random subspace sampling and Fishervoice for speaker verification. In the previous random sampling framework [1], we randomly sample the JFA feature space into a set of low-dimensional subspaces. For every random subspace, we use Fishervoice to model the intrinsic vocal characteristics in a discriminant subspace. The complex speaker characteristics ar...
متن کامل